If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+36x-144=0
a = 5; b = 36; c = -144;
Δ = b2-4ac
Δ = 362-4·5·(-144)
Δ = 4176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4176}=\sqrt{144*29}=\sqrt{144}*\sqrt{29}=12\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-12\sqrt{29}}{2*5}=\frac{-36-12\sqrt{29}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+12\sqrt{29}}{2*5}=\frac{-36+12\sqrt{29}}{10} $
| 4x-10=-6x | | 17/20=t+(-13/20) | | 4*80x=30.40 | | 4÷x=30.40 | | x÷-6=10 | | 2=4r-10 | | q-8=-24 | | 10-3n=19 | | -9=q-4.8 | | 2x2+3x2=1024 | | -54÷x=-6 | | 0.22(10,00)-0.03y=0.07(y+10,000) | | 5-t=-25 | | 2x^+3x^=32^ | | -18.43=3.99+z | | 1.9+x=9.5 | | 2x^2+3x^2=32^2 | | 2x-2.5=1.5 | | 5(2x)=10x | | 2/3n+2=-2/3(n+9) | | 6×-1=2/3x+7 | | 1/2(5t-9)=7/2t-t+9/4 | | -2/3n+2=-2/3(n-9) | | -2/3+2=-2/3(n-9) | | 2(4-3x)=4(2x-6) | | |m+4|+4=34 | | 2(s)+3+s+s=39 | | 9/7(a+3)=4+5/4a | | 5/3x+1/6x=48/9 | | 12-d=14 | | 6(1/3k-(k+1/2)=1/6(k+3) | | 68-w=6w |